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Abstract—Selection criteria regulating IoT device discovery
involve confidentiality issue on the information the constraints
convey. A promising approach to cope with this issue is leveraging
on blockchain technology and smart contracts to implement
the overall discovery process deployment. However, due to the
blockchain design, data within the blockchain is public and
smart contracts cannot access data outside the blockchain,
unless through the exploitation of Oracles. On the one hand,
this brings benefits of trust decentralization, transparency, and
accountability of the discovery process. On the other hand, it
carries serious consequences on confidentiality and privacy as
well as on Oracles trustworthiness. For these reasons, in this
paper, we investigate how to ensure data confidentiality during
the discovery process of IoT devices on blockchain even in the
presence of an untrusted Oracle.

Index Terms—Internet of Things; IoT Device Discovery;
Blockchain; Confidentiality.

I. INTRODUCTION

Today, Internet of Things (IoT) represents one of the most

significant field of interest from the industrial, as well as the

academic and research community, with near $874M raised

in the Q2/2018 and a trillion dollar impact.1 Past studies have

predicted that by 2020 more than 50 billion IoT devices will be

connected to the internet. At the time of writing, this number is

close to 24 billion, with an extremely high variety of involved

applications and services, that are increasing every day.

In the IoT environment, “things” are connected devices

(e.g., sensors) with remote sensing and/or actuating capabil-

ities, that can exchange collected data with other connected

devices and applications. In general, they can collect and

process the data either locally, or remotely, through cloud-

based application back-ends [1]. The scale of IoT solutions can

range from a simple application that monitors and reacts to the

temperature of a sensor, to a full-blown enterprise application

that manages and controls a set of buildings.

As a single IoT device has often a limited computational

power, many of the most interesting IoT services are offered

through a collaboration of a series of IoT devices. The real

added value is achieved when the connected IoT devices

are able to communicate with each other and integrate with

vendor-managed inventory systems, customer support systems,

business intelligence applications, and business analytics. For

example, smart things, such as sensors and actuators can be

1https://iot-analytics.com/iot-investments-m-and-a-market-update-2018/

composed together to keep the air condition optimal in an

house while optimizing the electricity usage. In this example

the air conditioner communicates with air circulators, windows

actuators, humidity sensors, and power grids.

To make the deployment of services relying on the col-

laboration of IoT devices possible, the first step is to make

available discovery mechanisms to search the required devices

distributed in the smart environment. This discovery process

has to be driven by a set of search requirements. For instance,

constraints referring to the type of service a given device has

to provide (e.g., temperature sensing), or to some expected

features of the devices (e.g., the sensor should be placed into

a given location, its latency should be below a given threshold).

A key point is therefore to have the assurance that all require-

ments have been correctly considered during the discovery

process. Indeed, an untrusted discovery process might fail in

evaluating the specified requirements in several ways. It might

return devices that do not satisfy the requirements (e.g., not

placed in the required location) as well omit those that indeed

satisfy them, with the final result of selecting IoT devices not

implementing the required service. As such, it is mandatory

that the discovery process provides a proof of the fact that it

has retrieved all and only those devices satisfying the specified

search requirements.

At this purpose, we propose to exploit blockchain to en-

sure the correctness of the IoT discovery process execution.

Blockchain technology can cope with the above mentioned

requirements by leveraging on its tamper-proof design and on

the key feature of enabling the computation of pre-defined

programs, called “smart contracts” [2]. More precisely, we

propose to have a IoT discovery process driven by the spec-

ified search requirements, implemented via a smart contract.

Blockchain network validation of the smart contract execution

provides assurance that all search requirements have been

correctly evaluated. However, it brings also some issues re-

garding the privacy and confidentiality of the involved data.

Indeed, sensitive data can be exposed during the evaluation

process (e.g., information about the device latency). Therefore,

in this paper, we design an approach that allows smart contract

execution by preserving, at the same time, the confidentiality

of the contained sensitive data. A further concern arises from

the need of an Oracle to handle interactions of blockchain

with external entities [3], which in turn requires to carefully
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consider possible data confidentiality breaches. For this reason,

in this paper, we investigate how to ensure data confidentiality

during the discovery process even in the presence of an

untrusted Oracle.

Literature presents several approaches (e.g.,[4], [5], [6])

aiming at achieving a distributed discovery service over IoT

devices capabilities (e.g., multi-attribute, range queries). Al-

though, these works propose scalable, self-configuring, and

reliable architectures, they do not provide any assurance on

requirements evaluation as well as they do not consider the

confidentiality issue.

Moreover, the integration of IoT within the blockchain

technology is currently under research on several fields (see

surveys in [7], [8] for a comprehensive overview of the

challenges and issues). An application scenario is the one of

achieving secure and trustworthy access control mechanisms

for IoT relying on smart contracts (see [9], [10]). Further-

more, blockchain platforms have been exploited to address

the collaboration among IoT components, exploiting the smart

contracts to overcome the lack of trust among them (e.g., [11],

[12], [13]). The idea of a smart contract acting as mediator

to control the collaborative process has been investigated in

other research field, not closely related to IoT, such as in web

services (e.g., [14], [15]). The confidentiality issues that arise

with a smart contract as a mediator of service composition

have been investigated also in [16], where encryption schemes

have been proposed to achieve a privacy-preserving compu-

tation of the smart contract in the presence of an untrusted

Oracle. However, to the best of our knowledge, we are the

first proposing an approach leveraging on blockchain for

the confidential discovery of IoT devices driven by specified

search requirements.

The rest of the paper is organized as follows. Section II

presents some background information on blockchain. Section

III introduces the search requirements we have considered and

the main design choices underlying our proposal. Section IV

presents the proposed approach, whilst Section V presents al-

gorithms behind it. Section VI shows preliminary experimental

results. Finally, Section VII concludes the paper.

II. BLOCKCHAIN BASICS

Blockchain [17] is a distributed append-only public ledger

technology, initially intended for cryptocurrency, e.g., Bitcoin.

It is replicated and shared among members of a network, to

keep track of every exchange of resources or assets between

participants, called transactions. As shown in Figure 1, the

blockchain structure is composed of a sequence of time-

stamped blocks, linked together by the hash values. Each block

includes several transactions and it is identified by its hash

value (i.e., the value returned by a cryptographic hash function

applied on the block content).

Transactions are inserted into blocks only if they are con-

sidered valid by the network participants through a distributed

consensus protocol that, in general, is deemed to be secure

if the majority of network participants are honest. At the

time of writing, several distributed consensus protocols have

Figure 1. Blocks forming a blockchain

been proposed, starting from the well-known Byzantine Fault

Tolerance algorithm (BFT) [18], passing through Proof of

work (PoW), Proof of Stake (PoS), up to newer ones, tailored

for specific blockchain frameworks. They differentiate on the

selection method exploited to insert a new block into the chain.

As an example, in PoW, nodes have to solve a computationally

intense puzzle, while in PoS, the block creator is selected

based on the amount of stake held by network nodes.

The computation involved in transaction validation can be

encoded into pre-defined programs, called smart contracts.

These can be seen as “a computerized transaction protocol

that executes the terms of a contract”. In this view, blockchain

plays the role of a distributed ledger storing results (i.e.,

transactions) of smart contracts whose correct evaluation have

been validated by network participants. Smart contract en-

abled blockchains are emerging as general purpose application

platforms, among which the most popular one is Ethereum,2

whereas Hyperledger3 is the most significant standardization

initiative. It is relevant to note that a smart contract cannot

directly retrieve data outside the blockchain, as interactions

with external entities are not directly possible. To overcome

this limitation, blockchain platforms rely on the presence of

a trusted mediator, called Oracle, that delivers data from an

external source to smart contracts. This provides flexibility to

the framework but, at the same time, might bring some security

issues, as it will be discussed in Section III-B.

III. REQUIREMENT-DRIVEN IOT DEVICE DISCOVERY

An IoT device collaboration can be modeled as a network of

IoT devices that have to interact in order to achieve a common

goal. From the point of view of the discovery process, an IoT

device collaboration can be represented as the set N of nodes

of the underlying IoT network. The IoT discovery process

plays a key role in the deployment of an IoT collaboration,

as it has to find which is the most appropriate device to be

assigned with each node. Before going into the details of our

proposal, we will introduce an example used throughout the

paper.

Example 1: Let us assume a smart city scenario where

an application has to search for devices to create an IoT

network for traffic control. The purpose of the application

is to limit the vehicle’s circulation in a particular area (say,

BakerStreet), depending on the pollution rate and the current

weather. At this purpose, the application is looking for devices

collecting information about weather and pollution as well as

2https://www.ethereum.org/
3https://www.hyperledger.org/
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controlling the traffic status (e.g., traffic control camera) near

BakerStreet.
As mentioned in the introduction, the discovery process is

usually driven by a set of search requirements. To give the

requesting entity the assurance that all the search requirements

have been correctly considered in the discovery process, we

leverage on blockchain. This is achieved by having a smart

contract, called Assigner, implementing the IoT discovery

process driven by the specified search requirements. Here, we

assume the Assigner smart contract is able to retrieve relevant

information about available IoT devices, aka device profiles,

and evaluate on them the specified search requirements. The

blockchain network validation of the Assigner execution

provides to the requiring application assurance that all search

requirements have been correctly evaluated.

Before presenting the proposed blockchain based IoT dis-

covery process, in this section, we illustrate in more details

the type of search requirements we support, and the design

principles we have considered in defining the process.

A. Search Requirements

Application search criteria. The first type of search re-

quirements refers to those specified directly by the appli-

cation requiring the IoT collaboration. As an example, an

application requiring the composition illustrated in Example 1

might impose that the traffic status device adopts high-security

standards and that its latency is less than 10ms. Hereafter, we

refer to a search criteria applied on a single node of the IoT

collaboration N as a local application search criteria (e.g.,

the weather device latency has to be lesser than 10ms) and to

a search criteria that has to be satisfied by each device in N
as global application search criteria (e.g., each device has to

be located near Baker Street). In addition, we also assume that

the requesting user can state, for a specific node, a blacklist
of devices he/she does not want to interact with. For example,

a user might prefer not having ACME company as a supplier

of the weather device.

Provider constraints. We also take into consideration that

the providers of the devices participating in the IoT col-

laboration might have additional requirements that need to

be considered in the discovery process. A relevant type of

constraint is the one modelling conflict of interests (COI)

among organizations (e.g., due to partnerships, being com-

petitors, etc.). Hereafter, we model a COI constraint specified

by a device (aka, the providing organization) as a list of

conflicting device providers. Additionally, organizations might

impose constraints on all the devices participating the to IoT

collaboration. We refer to this type of constraints as Global
provider constraints. Referring to Example 1, for instance, the

traffic device might require that each device in N adopts strong

security mechanisms.

Both the above types of search criteria can be modeled as

conditions to be evaluated on a device profile. For this purpose,

we assume that each device exposes a device profile, modelled

as a list of pairs (Attribute, V alue) encoding all the device

properties and their corresponding values (e.g., Latency,10ms;

Encryption, AES256). To formally represent these search

requirements, we introduce introduce the following formal

definitions:

Definition 1: Search requirement. Let Att be the set

of attribute names used in the device profiles. A search

requirement Req on Att is defined as a boolean expression on

a set of predicates R = r1, . . . , rn, where, for each ri ∈ R,

ri = a ⊕ V alue, having a ∈ Att, ⊕ a conditional operation

(i.e., = , >, <, ≥, ≤), and V alue a threshold value in the

domain of a.

Definition 2: Application search criteria. Let DC be a de-

vice collaboration required by an application. Let N be the set

of nodes involved in DC. Application search criteria specified

by u on DC are defined as Ca = {Local,Global, Blacklist}
where:

• Local = {(n1, Req1), . . . , (nn, Reqn)}, where Reqj is

a search requirement defined according to Definition 1

applied only to node nj ∈ N , j = {1, . . . , |N |}.

• Global = {Req1, . . . , Reqn}, where Reqj is a search

requirement defined according to Definition 1 applied to

any node nj ∈ N , j = {1, . . . , |N |}.

• BlackList = {(n1, [pid1, . . . , pidn]), . . . ,
(nn, [pid1, . . . , pidn])}, where j = {1, . . . , |N |},

and pidk, k ∈ {1, . . . ,m} is the identifier of a device

provider which should not be assigned to node nj .

Example 2: Let us consider again Example 1, and suppose

that the application has the following criteria: the location

of the weather device has to be Baker Street; the encryp-

tion used by each device has to be AES 256bit; ACME

devices must not be involved in the weather sensing ac-

tivity. These requirements are modeled through the follow-

ing criteria: Local = {weather, location = BakerStreet},

Global = {Encryption = AES256}, Blacklist =
{weather, [ACME]}.

Definition 3: Provider constraints. Let DC be a device

collaboration required by an application. Let N be the set

of nodes involved in DC. Let d be a device involved in the

collaboration. Provider constraints specified by d on DC are

defined as Cd = {Global, COI} :

• Global = {Req1, . . . , Reqn}, where Reqj is a require-

ment defined according to Definition 1 applied to any

node nj ∈ N , j = {1, . . . , |N |}.

• COI = {pid1, . . . , pidn} defines the list of providers

having a COI with d, where pidj is a provider identifier.

Example 3: Consider a scenario where a device poses

constraints requiring that all devices in the composition

have to adopt a specific encryption method (e.g., AES

256bit) and it does not want to collaborate with ACME.

These constraints are modeled, respectively as : Global =
{Encryption = AES256} and COI = {ACME}.

B. Design principles

In the design of the proposed requirement-driven IoT dis-

covery process on Blockchain we have taken into account the

two following main principles.
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Best selection. The purpose of IoT discovery is to assign

to every node in the IoT network the proper device, that is,

a device that satisfies all the requirements posed by the re-

questing application as well as by the providers of the devices

associated with the nodes of the composition. However, we

have to take into account that, given a node n, the discovery

process might find several devices satisfying the associated

requirements. In order to select just one device, we have to

rank them according to some criteria, thus to select the best

one. Among possible criteria (e.g., reputation, QoS, etc.), in

this paper, we rank selected devices based on how much their

profiles are close in satisfying search criteria. To compute this

rank, we exploit metrics to compare the distance between the

attribute value of the device profile and the threshold value

contained in the constraint. As an example, given the search

criteria “latency<30ms” and two devices, say D1 and D2,

having two latency values say 20ms and 11ms, that both

satisfy it, Assigner selects D2, since its value is closer to

the threshold value.

Confidentiality. Thanks to distributed consensus, the eval-

uation of a requirement-driven discovery process via a smart

contract ensures the correctness of requirements evaluation.

However, it poses new challenges. Indeed, by design, a smart

contract is defined as public and, according the adopted

distributed consensus protocol, it has to be evaluated by

blockchain network participants, called validators, to validate

its output. This might expose sensitive data contained in the

Assigner smart contract. As an example, each validator has to

be able to access the device profile as well as the search criteria

and provider constraints, that may convey very sensitive data.

For instance, information about COI among device providers

may be confidential for business purposes. For this reason,

in designing the Assigner, we have to adopt a mechanism

to ensure a confidential execution of the requirement-driven
discovery process, that is, we have to execute the smart

contract by preserving, at the same time, the confidentiality

of the contained sensitive data.

A further concern arises from the need of an Oracle to

handle interactions of blockchain with external entities [3].

Although Oracles allow the blockchain to be more flexible,

they introduce the presence of a mediator between the smart

contract and external services, which require to carefully

consider possible data confidentiality breaches. As an example,

since the Assigner has to inquiry the Oracle to retrieve

device profiles, a malicious Oracle is able to read all contained

information, which could be highly sensitive (e.g., device

latency). As such, a further relevant requirement is to ensure

the Oracle data confidentiality, by preventing the Oracle to

access the sensitive information contained into the device

profile.

In the following section, we show how the above principles

have been considered in the design of the proposed Assigner.

Figure 2. The general picture

IV. CONFIDENTIAL REQUIREMENT-DRIVEN IOT

DISCOVERY PROCESS

In this section, we present the reference architecture in

support of the proposed IoT device discovery process (see

Figure 2). The process starts when an application submits the

criteria for the discovery of IoT devices. Since we assume an

application might require to setup an IoT network, we model

the input as a list Napp of N search criteria, one for each

node required in the IoT network. This list is submitted to

the Deployer, which is an off-chain component in charge

of the creation of the Assigner smart contract, tailored for

the required discovery process. In particular, given N, the

process to be encoded in the smart contract has to perform

the following tasks.

(I) For each node nj ∈ N , it has to retrieve the set

of available IoT devices, their profiles, and their provider

constraints, if any. This is performed by exploiting the Device
Register, an entity that keeps a record of the available devices

and their profiles.4 In particular, the Assigner inquiries the

Device Register via an Oracle (see Figure 2). The retrieved

devices are referred as Candidate Devices List for node nj ,

CDLnj .

(II) For each node nj , the Assigner has to prune from the

corresponding CDLnj
those devices that do not satisfy the

application search criteria or provider constraints. This implies

that, given a candidate device d in CDLnj , the Assigner has

to evaluate whether d is compatible with devices assigned to

previous nodes, that is, if d’s profile satisfies all the constrains

posed by providers of devices assigned to previous nodes

(i.e., n1, . . . nj−1). If d’s profile does not satisfy even one

of these provider constraints, the Assigner has to remove

d from CDLnj . The devices obtained by this evaluation are

referred as Selected Devices List for node nj , SDLnj
, which

4The Assigner has to retrieve all those devices that perform a given type
of service. This holds under the assumption that, for each node, the application
has specified the required service type as a mandatory search criteria.
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could also be empty. In this respect, there can be two cases.

The first one is when SDLnj is empty because none of the

devices in CDLnj satisfy the application search criteria. In

this case, the Assigner has to terminate the discovery process,

since for node nj is not possible to find a proper device. The

second case is when the SDLnj
is empty because none of

the devices in CDLnj
is compatible with previous assigned

devices. Here, rather than terminating the discovery process,

the Assigner has to reconsider the previous assignments. In

particular, it starts by selecting an alternative device for nj−1

and verifies if, with this new assignment, the SDLnj
is not

empty (e.g., at least a node in CDLnj
is compatible with

the new device assigned to nj−1). If this is not the case,

the Assigner proceeds to re-assign node nj−2 and so on till

SDLnj is not empty, or it reaches the first node n1. Even if

after the re-assigment of all the previous nodes, the list is still

empty, the Assigner has to terminate the discovery process.

(III) In case SDLnj
is not empty, as a final step, the

Assigner has to select, among the devices in the list, the

best one to be assigned to nj . The idea is to rank devices in

SDLnj based on how much their attribute values are close in

satisfying search criteria and provider constraints (cfr. Section

III-B). To compute this rank, we exploit metrics to compare the

distance between the attribute value of the device profile and

the threshold value contained in the search criteria/provider

constraint.5 In case search criteria/provider constraints contain

different conditions posed on different profile attributes, we

assume them ordered according to a priority specified by the

application on profile attribute. The rank is thus computed by

ranking services according to highest-priority conditions.

These three tasks represent the main operations that have

to be executed by the Assigner smart contract. We note that

the best selection principle is taken into account by task (III).

In contrast, the confidentiality principle requires to encode the

process into the Assigner smart contract such that sensitive

data are not accessible neither to validators executing the smart

contract, nor to the Oracle mediator. The proposed solution

implies to encrypt sensitive data, contained and used in the

Assigner smart contracts, in such a way that they can be

consumed (aka decrypted) only by authorized actors by, at the

same time, allowing simple computations over it needed for

the execution of the discovery process (e.g., criteria/constraint

evaluation on device profiles).

V. Assigner ALGORITHM

In this section, we present the algorithm implemented by the

Assigner smart contract. Before this, we briefly introduce the

adopted encryption schemes.

A. Adopted encryption schemes

We recall that in our scenario we have to protect (aka en-

crypt) the data contained into the smart contract (e.g., attributes

storing the device latency values), by, at the same time, making

5An example of these distance metrics can be found in [19], where it is
analyzed how much an access request is close to satisfy an access control
policy.

possible to execute some computation on it (e.g., evaluating

whether the latency is less than a given threshold). At this pur-

pose, we cannot exploit standard encryption schemes, rather

the idea is to exploit alternative encryption schemes supporting

simple operations over encrypted data, such as homomorphic

encryption. These encryption schemes are defined such that,

given two ciphertexts E(a) and E(b), the computation of

an operator ⊕ on them, i.e., E(a)⊕E(b), generates an

encrypted value E(c), whose decryption corresponds to the

result of ⊕ applied on the plaintexts a and b, i.e., E(a)⊕
E(b)=E(c), where a⊕b=c. The scheme can be fully (FHE)

homomorphic, supporting arbitrary computation on cipher-

texts, or partially (PHE) homomorphic, supporting only a

subset of mathematical functions on encrypted data. Among

the available homomorphic schemes, we have selected the

Order Preserving Encryption (OPE) scheme [20]. This scheme

allows us to perform simple condition operations (<,>,=)

on encrypted values, making thus possible the evaluation of

search requirements (see Definition 1) directly over encrypted

devices attributes’ values and encrypted thresholds.

In order to adopt this scheme, we assume that a pair of

OPE public/private keys is generated for every instance of

Assigner execution, that is, for every new request of an IoT

discovery process. These keys are generated directly by the

Deployer, which has to use them to encrypt the sensitive data

contained in the Assigner (e.g., threshold values specified

in the search requirements). Also the device profile attributes

have to be encrypted with these keys. As such, we assume

the Device Register is aware and complaint with the proposed

solution, as it has to encrypt the device profile’s attributes

with the OPE public/private key associated with the discovery

process.

B. Algorithms

The underlying logic implemented by the Assigner smart

contract is represented in Algorithm 1. This takes as input,

from the Deployer, the search criteria specified by the appli-

cation for each node n ∈ N , encoded into a list called Napp,

and returns the list of best devices to be assigned to each

node (BRLN in the algorithm). It is relevant to note that the

Deployer builds Napp such that the threshold’s values and the

criteria specified in search criteria are encrypted with OPE key

associated with the Assigner.

As described in Section IV, at runtime the Assigner
performs three main tasks. As a first task, it has to inquiry

the Device register through an Oracle (QueryDeviceRegister

in the algorithm) in order to retrieve, for each n ∈ N , the list

of devices able to carry out n, called Candidate Device List
(CDLn in the algorithm) (lines 8-35). Once this information

is retrieved, for each node n in N , Assigner has to evaluate

each device in CDLn to select only those that satisfy the

application search criteria (i.e., local, global and blacklist)

specified in Napp for n, say Ca (lines 16-25). As a first step,

it checks whether the considered device D, aka its providers,

is not included into the blacklist specified in Ca (line 16). If

this is the case, it evaluates the local and global constraints.
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It is relevant to recall that to guarantee privacy-preserving
computation, and the Oracle data confidentiality requirements

while enabling Assigner to perform the requirement evalua-

tion (lines 8-23), the device’s profiles/providers constraints in

CDL are encrypted with OPE scheme. This means that, for the

evaluation of the criteria C1⊕V1, where C1 is a criteria and V1
is a value, the OPE scheme is C1OPE⊕V1OPE. As an example, for

the condition latency<10, the criteria latency and the value 10

are encrypted with OPE. Exploiting OPE, the Assigner first

evaluates the local criteria in Ca (line 17). The evaluation is

done by Evaluationconstraint (see Procedure 2), which takes

as input the device D and the constraint Cons that D has to

satisfy. This procedure considers the disjunctive normal form

(DNF) of Cons and evaluates separately each clause. For each

clause, it checks if all included predicates are satisfied. This is

done by matching the threshold value specified in the predicate

with the corresponding attribute value in the device profile.6

Algorithm 1 Assigner

1: Input: Napp, the list of search criteria.
2: Output: BRLN , the list of best selected devices for each Napp[i].
3: Let Nodelist be the list of nodes in N .
4: Let SDLN be a matrix initialized empty
5: Let CDLn, BRLN be initialized empty
6:
7: matrixIndex = 0
8: for all n ∈ NodeList do
9: Let Ca be the search criteria associated with Napp[i]

10: Let reqn be the criteria associated with node n in Ca.local
11: CDLn = QueryDeviceRegister(n)
12: Let SDLn be a vector initialized empty
13: ListIndex = 0
14: for all D ∈ CDLn do
15: Let pid be the identifier of D’s provider
16: if (pid /∈ Ca.blacklist) then
17: if Evaluationconstraint( D, reqn) then
18: satisfy = true
19: for all Req ∈ Ca.global do
20: if satisfy then
21: if Evaluationconstraint( D,Req) == false then
22: satisfy = false
23: end if
24: end if
25: end for
26: if satisfy then
27: SDLn[ListIndex] = D
28: ListIndex + +
29: end if
30: end if
31: end if
32: end for
33: SDLN [matrixIndex] = SDLn

34: matrixIndex + +
35: end for
36:
37:
38: for Index = 0 to |Nodelist| do
39: Sort(SDLN [Index])
40: BRLN [Index] = SDLN [Index].[0]
41: end for
42:
43: IndexDi

= 0
44: IndexDj

= 0
45: Solution = Providerconstraints (BRLN , SDLN , IndexDi

, IndexDj
)

46: if Solution == 1 then
47: return ”no solution”
48: else
49: return BRLN

50: end if

6For sake of clarity, the procedure shows only the pseudocode of a generic
operator ⊕.

Procedure 2 Evaluationconstraint

1: Input: D, a device; Cons, a search requirement
2: Output: True if D satisfies the Cons; False, otherwise.
3: Let C be the set of clauses contained in the DNF form of Cons
4: satisfied = false
5: for all c ∈ C do
6: if satisfied == false then
7: Let P be the set of predicates in c
8: state == 0
9: for all p ∈ P do

10: if state=0 then
11: Let Att be the attribute over which p is defined
12: Let ⊕ be the conditional operation specified in p
13: Let val be the value associated with Att in profile of D
14: if (Att ⊕ val) then
15: satisfied = true
16: else
17: satisfied = false
18: state = 1
19: end if
20: end if
21: end for
22: end if
23: end for
24: return satisfied

Procedure 3 Providerconstraints

1: Input : BRLN , the list of ranked devices, SDLN , IndexDi
, IndexDj

2: Output : 1 if there is no solution; 0 otherwise.
3:
4: satisfied = 1
5: for i=0 to |BRLN | do
6: Let cons be the set of global constraints associated with the device in BRLN [i]
7: for j=0 to |BRLN | do
8: if BRLN [j] �= BRLN [i] then
9: for all c ∈ cons do

10: Let COI be the set of COI constraints associated with the device in
BRLN [j]

11: if Evaluationconstraint (Dj , cons) == false or BRLN [i]
∈ COI then

12: satisfied = RollbackProcess (BRLN , SDLN ,
IndexDi

, IndexDj
, i, j)

13: end if
14: end for
15: end if
16: j + +
17: end for
18: i + +
19: end for
20: return satisfied

A similar process is done to evaluate the global constraints

contained in Ca (lines 19-25). If the considered device D
satisfies both the global and local constraints, it is inserted

into the Selected Device List (SDLn in the algorithm). Once

all devices for each node n have been considered, the selected

devices are stored into an array called SDLN , where the j-th

element contains devices selected for node nj .

As a second task (lines 37-41), Assigner ranks devices

contained into each element of SDLN array and selects the

first ranked, generating the so-called Best Ranked List (BRLN

in the algorithm). This sorting is performed following the best

selection strategy explained in Section III, where each com-

parison operation among devices profile attributes/thresholds

are done exploiting the OPE encryption scheme.

As a third task (lines 43-50), the Assigner has to eval-

uate if each device in the BRLN also satisfies provider

constraints posed by other devices inserted into BRLN . In

case a constraint is not satisfied the BRLN has to be updated

accordingly.

This evaluation is done by Providerconstraints (see Proce-

6
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Procedure 4 RollbackProcess

1: Input : BRLN , SDLN , IndexDi
, IndexDj

, i, j
2: Output : 1 if there is no solution; 0 otherwise.
3:
4: Let NewDj

be initialized empty

5: IndexDj
+ +

6: NewDj
= SDLN [j][IndexDj

]

7: if NewDj
= ∅ then

8: Let NewDi
be initialized empty

9: IndexDi
+ +

10: NewDi
= SDLN [i][IndexDi

]
11: if NewDi

= ∅ then
12: return 1
13: else
14: if NewDi

/∈ Dj .COI and Dj /∈ NewDi
.COI then

15: BRLN [i] = NewDi
16: IndexDi

= 0
17: IndexDj

= 0
18: Providerconstraints (BRLN , SDLN , IndexDi

, IndexDj
)

19: else
20: RollbackProcess (BRLN , SDLN , IndexDi

, IndexDj
, i, j)

21: end if
22: end if
23: else
24: if NewDj

/∈ Di.COI and Di /∈ NewDj
.COI then

25: BRLN [j] = NewDj
26: IndexDi

= 0
27: IndexDj

= 0
28: Providerconstraints (BRLN , SDLN , IndexDi

, IndexDj
)

29: else
30: RollbackProcess (BRLN , SDLN , IndexDi

, IndexDj
, i, j)

31: end if
32: end if
33: return 0

dure 3), which takes as input the list of best devices BRLN ,

the array of selected devices SDLN and the indexes of the

devices D in both the lists. The procedure evaluates, for each

device Di in BRLN , if all the other devices in BRLN satisfy

Di global constraints and do not belong to Di’s COI list.

If one of these conditions is not met, Providerconstraints
has to select the device that is ranked just after D in the

sorted list (SDLn), replace D with it, and evaluate from the

beginning all the constraints for all the nodes/devices. This

is done by the Rollbackprocess procedure (see Procedure 4),

which takes as input the list of best devices BRLN , the array

of selected devices SDLN , the indexes of the device D in

both the lists and the indexes of devices already evaluated

by Rollbackprocess. As a first step, the procedure selects the

device that is ranked just after D in the SDLn. If any (aka the

list is not empty) the procedure evaluates if the new device

(NewDj ) does not belong to the COI list of D and vice-

versa. If the new device meets the conditions, the BRLN list

is updated with the new device and the constraints evaluation

goes back to the beginning. Otherwise, the next device in the

list is selected for evaluation. However, the procedure has to

take into account the scenario where, for a given node n,

there is no device in SDLn that satisfies the application and

provider-defined constraints. In such a case, Rollbackprocess
has to be iteratively repeated.

VI. EXPERIMENTAL RESULTS

In this section, we provide results of a set of experiments

we carried out to test the feasibility of our proposal. At this

purpose, we have implemented Assigner smart contract in the

Ethereum blockchain coding the experiments in the Solidity7

programming language by exploiting REMIX IDE and executed

on the ropsten testnet.8

The aim of these experiments is to provide an estimation

of the cost of our solution, that is, the cost of the Assigner
smart contract.9 In order to estimate the Assigner cost, we

run several experiments varying two main dimensions to show

how these impact the final cost. These dimensions arise by the

consideration that the complexity of Assigner smart contract

computation depends on the number of search requirements

evaluation it has to perform. In particular, given an IoT device

collaboration modeled as a list of nodes N , the number of

evaluations to be run for each node n ∈ N depends on: the

number of search requirements NSR associated with n and

the number of available devices CDL, returned by the Device
Register, able to execute n.

To test these dimensions, we have generated a set of device

collaborations, modeled as a list of nodes, N , by varying the

number of available devices for each node, which represents

the dimension of CDL (i.e., CDL ∈ [0, 20]). Then, we have

created a smart contract modelling the algorithms for the

assigner process and exploited the set N as input for the

evaluation, with a varying number of search requirements (i.e.,

NSR∈ [1, 8]).
Varying the number of search requirements. As a first

experiment, we run Assigner by varying the number of

search requirements associated with each node in the IoT

collaboration. Figure 3 shows the cost overhead, expressed

in ethers (i.e., y-axis) by varying the number of each type of

search requirement (i.e., x-axis), by also highlighting the type

of search requirements. In the case of 7 constraints, the cost

in USD is 0,84$.

Figure 3. Cost overhead by varying the number of search requirements.

7https://solidity.readthedocs.io/en/v0.5.6/
8https://ropsten.etherscan.io/,https://remix.ethereum.org
9As cost, we have considered both the deploy and execution cost, expressed

as gas usage in ether(ETH), the currency adopted in Ethereum. At the time
of writing (March 2019) 1 ETH = 163,43 USD, with a gas cost of 10 Gwei
meaning a confirmation time of about ∼ 25 seconds.

7
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Varying the number of candidate devices. As a second

experiment, we have varied the actual dimension of the CDL
list returned to the Assigner by the Device Register. Figure

4 shows the cost overhead, expressed in ethers (i.e., y-axis)

by varying the number of parameters in CDL (i.e., x-axis).

In the case of 15 devices, the cost in USD is 0,91$.

Figure 4. Cost overhead by varying the dimension of CDL.

As a summary, we can conclude that the cost of the deploy-

ment of a IoT discovery process on blockchain, under differ

settings of varying complexity, varies in the range [0,001-0,1]

ethers, corresponding to [0,13-13,33] USD.10

These experiments show how the estimated cost of the

Assigner smart contract linearly change w.r.t the complexity

of the scenario. The additional cost introduced can be miti-

gated by taking into account other Blockchain platforms, such

as the permissioned one.

VII. CONCLUSION

In this paper, we have shown how blockchain can be used to

ensure that all search requirements underlying an IoT discov-

ery process are correctly evaluated. The key idea is to have a

smart contract to implement the discovery process, where the

blockchain network validation of the smart contract execution

ensures the correctness of the IoT discovery process. Since

sensitive data are exposed during the evaluation process (i.e.,

devices’ profile and search requirements), in this paper, we

have proposed homomorphic encryption schemes supporting

the smart contract execution by preserving, at the same time,

the confidentiality of the contained sensitive data. The paper

shows some preliminary experimental results, highlighting the

implied costs and the feasibility of the proposed approach.

We plan to extend this work according to several dimensions.

First, we plan to run a more extensive set of experiments, with

standard IoT benchmarks. Also, we are interested in extending

the proposed solution so as to deal with additional security

issues related to interactions with Oracles (e.g., authenticity

and integrity).
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